博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
在线机器学习算法及其伪代码
阅读量:6683 次
发布时间:2019-06-25

本文共 1616 字,大约阅读时间需要 5 分钟。

机器学习:需要从已知的数据 学习出需要的模型

在线算法:需要及时处理收集的数据,并给出预测或建议结果,并更新模型

通用的在线学习算法步骤如下:

1. 收集和学习现有的数据

2. 依据模型或规则,做出决策,给出结果

3. 根据真实的结果,来训练和学习规则或模型

常用的在线学习算法:

Perception: 感知器

PA: passive perception 

PA-I

PA-II

Voted Perception

confidence-weighted linear linear classification: 基于置信度加权的线性分类器

Weight Majority algorithm

AROW:adaptive regularization of weighted vector 加权向量的自适应正则化

 

"NHERD":Normal Herd 正态

这里收集了一些算法伪代码,代码然后配上语言描述,就清晰多了。

感知器Perception:

线性分类器,是一个利用超平面来进行二分类的分类器,每次利用新的数据实例,预测,比对,更新,来调整超平面的位置。

相对于SVM,感知器不要每类数据与分类面的间隔最大化。

平均感知器Average Perception:

线性分类器,其学习的过程,与Perception感知器的基本相同,只不过,它将所有的训练过程中的权值都保留下来,然后,求均值。

优点:克服由于学习速率过大,所引起的训练过程中出现的震荡现象。即超平面围着一个中心,忽左忽右之类...

Passive Aggressive Perception: 

修正权值时,增加了一个参数Tt,预测正确时,不需要调整权值,预测错误时,主动调整权值。并可以加入松弛变量的概念,形成其算法的变种。

优点:能减少错误分类的数目,而且适用于不可分的噪声情况。

Tt 有三种计算方法:

a. Tt =  lt / (||Xt||^2)

b. Tt =  min{C, lt / ||Xt||^2} 

c.  Tt =  lt / (||Xt||^2 + 1/(2C))

分别对应PA, PA-I, PA-II 算法,三种类型。

Voted Perception:

存储和使用所有的错误的预测向量。

优点:实现对高维数据的分类,克服训练过程中的震荡,训练时间比SVM要好。

缺点:不能保证收敛

Confidence Weight:

线性分类器

每个学习参数都有个信任度(概率),信任度小的参数更应该学习,所以会得到更频繁的修改机会。信任度,用参数向量的高斯分布表示。

权值w符合高斯分布N(u, 离差阵),而 由w*x的结果,可以预测其分类的结果。

并对高斯分布(的参数)进行更新。

这种方法能提供分类的准确性,并加快学习速度。其理论依据在在于算法正确的预测概率不小于高斯分布的一个值。

AROW: adaptive regularition of weighted vector

具有的属性:大间隔训练large margin training,置信度权值confidence weight,处理不可分数据(噪声)non-separable

相对于SOP(second of perception),PA, CW, 在噪声情况下,其效果会更好.

Normal herding: 

线性分类器

NHerd算法在计算全协方差阵和对角协方差阵时,比AROW更加的积极。

Weight Majority: 

每个维度都可以作为一个分类器,进行预测;然后,依据权值,综合所有结果,给出一个最终的预测。

依据最终的预测和实际测量结果,调整各个维度的权值,即更新模型。

易于实施,错误界比较小,可推导。

Voted Perception:

存储和使用所有的错误的预测向量。

优点:实现对高维数据的分类,克服训练过程中的震荡,训练时间比SVM要好。

缺点:不能保证收敛

 

你可能感兴趣的文章
【推荐】(SqlServer)不公开存储过程sp_Msforeachtable与sp_Msforeachdb详解
查看>>
在结构体内定义宏
查看>>
TURBOGATE邮件网关——最经济高效的企业网关选择
查看>>
MS14-058 最新提权神器
查看>>
数据挖掘算法(Analysis Services – 数据挖掘)
查看>>
Apache配置详解(最好的APACHE配置教程)
查看>>
JAVA笔记——String类
查看>>
我的友情链接
查看>>
CentOS 7 下基于基 bitnami 安装部署 redmine
查看>>
DEDE 标签汇总
查看>>
华章1-2月份新书简介(2019年)
查看>>
我的友情链接
查看>>
linux ubuntu apt-get 更换源
查看>>
【Web探索之旅】第二部分第三课:框架和内容管理系统
查看>>
Javascript中公有成员,私有成员,静态成员
查看>>
SHELL脚本练习
查看>>
DB2-内存的使用
查看>>
ZooKeeper安装与配置(Linux --- 转)
查看>>
最新勒索软件病毒防范方法及措施
查看>>
NIO学习系列:缓冲区内部实现机制
查看>>